Surface Grafting of Nanometer Scale Hydrocarbon Films.
نویسندگان
چکیده
منابع مشابه
Nanometer-scale striped surface terminations on fractured SrTiO(3) surfaces.
Using cross-sectional scanning tunneling microscopy on in situ fractured SrTiO(3), one of the most commonly used substrates for the growth of complex oxide thin films and superlattices, atomically smooth terraces have been observed on (001) surfaces. Furthermore, it was discovered that fracturing this material at room temperature results in the formation of stripe patterned domains having chara...
متن کاملOptical magnetic near-field intensities around nanometer-scale surface structures
Recently, local probes used in optical experiments added a new dimension to the study of the optical properties of small particles lying on a surface. Until now, several theoretical frameworks, developed to understand the interaction of optical fields with mesoscopic and nanoscopic objects, emphasized mainly the prediction of the electric near-field distributions generated by these structures. ...
متن کاملImpedance of nanometer thickness ferromagnetic Co40Fe40B20 films
Nanocrystalline Co40Fe40B20 films, with film thickness tf = 100 nm, were deposited on glass substrates by the magnetron sputtering method at room temperature. During the film deposition period, a dc magnetic field, h = 40 Oe, was applied to introduce an easy axis for each film sample: one with h||L and the other with h||w, where L and w are the length and width of the film. Ferromagnetic resona...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملMolecular beam deposition of DNA nanometer films.
The development of novel photonic devices which incorporate biological materials is strongly tied to the development of thin film forming processes. Solution-based ("wet") processes when used with biomaterials in device fabrication suffer from dissolution of underlying layers, incompatibility with clean environment, inconsistent film properties, etc. We have investigated ultra-high-vacuum molec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Photopolymer Science and Technology
سال: 1997
ISSN: 0914-9244,1349-6336
DOI: 10.2494/photopolymer.10.151